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Abstract: Protein purification is an ever-vital technique for academia and industry. This paper
mainly reviews and discusses one of the core components of proteomics—the latest advances in
separation technology for protein components—focusing on five different methods. The multi-
column plate adapter (MCPA) system is incredibly economical for protein treatment research to
purify samples. Because of the affinity of excess Ulp1 protease for SUMO fusion, excess protein
products may be obtained within half an hour using this method. Magnetic separation strategies can
offer a better protein purification process in the future because of a few advantages. The evaluation
established that the aqueous two-phase system (ATPS) technique is a cost-effective, time-saving
(30 min), and high-recuperation approach that can be scaled up for commercial purposes. Therefore,
the ATPS may be a viable single-step separation purification method, moving away from multi-step
purification such as the chromatography technique. Our review provides a technique capable of
efficient protein purification.

Keywords: review; MCPA system; SUMO fusion; magnetic separation; ATPS technique; chromatog-
raphy technique

1. Introduction

Proteins are commonly created in heterologous structures because it is tough to acquire
high-quality products from herbal sources. The efficient expression and purification of
recombinant proteins continue to be fundamental problems in biotechnology. Several
methods have been used to simplify the purification procedure, including the method of
affinity [1,2]. Because figuring out the structure of the relationship between a protein and a
ligand is important for biochemistry and finding new drugs [3,4], protein purification is an
important method for both academia and industry [5,6].

The isolation, separation, and purification of diverse proteins, peptides, and specific
molecules are employed in nearly all branches of bioscience and biotechnology. For this
reason, the advancement of separation knowledge and technology is an important charac-
teristic of bio-oriented research and development. “New separation techniques are needed
that can treat dilute solutions or solutions with only small amounts of target molecules in
the presence of a large number of other compounds, even in the particulate matter” [7].

The improvement and accuracy of proteomics are inseparable from separation and
identification development. Natural proteins are often mixtures, and many critical proteins
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are poor in biomaterials. Therefore, the isolation of proteins without affecting their shape,
composition, and activity has continually been an issue in proteomics research [8]. With the
improvements in development, many new technologies have been implemented for protein
separation, such as the multi-column plate adapter (MCPA) [9], the cell-surface display
primarily based on the SUMO-Ulp1 system [10], the aqueous two-phase system (ATPS) [11],
chromatography [11,12], magnetic separation [7,13], etc. According to the protein residence,
it is becoming more common to cleave proteins by combining a couple of methods that can
better hold the function and shape of the proteins and obtain better resolution.

This paper mainly reviews and discusses one of the core components of proteomics—
the latest advancements in separation technology for protein components—focusing on
five different methods.

2. Multi-Column Plate Adapter (MCPA) System

Many studies on protein structure and function require multiple protein purification
techniques to develop protein purification methods. The case of the purification of ther-
apeutic proteins, such as antibodies, is referred to. Since then, technologies have been
developed to meet the demand. However, higher protein yields and purity in one step come
with a higher price, which is usually not feasible for small-scale research [14]. Immobilized
metal affinity chromatography (IMAC), automated fast protein liquid chromatography
(FPLC), and protein maker are the instruments that are used now.

Some researchers believe a cheaper protein purification method with higher purity
and a shorter duration can be developed with a multi-well collection plate and simple
gravity. This is the main idea behind the multi-column plate adapter (MCPA) system. The
system can be set up in different ways and with various conditions, such as other types of
resin, buffer systems, wash buffer imidazole concentration, and lysate load volume [15].

The MCPA system consists of a series of long-drip filter plates with a sealing mat and
other conventional laboratory supplies, as in Figures 1 and 2. The system can be reused
repeatedly for protein purification after cleaning. The system uses affinity chromatog-
raphy as a protein purification technique. Some researchers used ion-exchange column
chromatography with the method [16].
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Figure 2. (A) The MCPA system has 24 columns (B) Even though got 96 columns but (C) six evenly
spaced holes per row over alternating lines for parallel protein purification [9].

A study of an MCPA system with affinity chromatography and without vacuum that
cost only USD 45 worked well to purify proteins, as summarised in Figure 3. In Figure 4,
vacuum manifolds greatly assisted the purification process by completing it in less time
than gravity.
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Figure 3. Purifying yeast AbpSH3 mutants using affinity chromatography with Ni resin and MCPA
under summarised vacuum process protocols [9].

The study successfully purified yeast AbpSH3 mutants using nickel (Ni) resins under
denaturing and native purification conditions. This was indicated by SDS-polyacrylamide
gel electrophoresis (SDS-PAGE) analysis. Under native purification conditions, the samples
with common contaminants at 25 kDa found under denaturing conditions [9] were purified.

The protein purification method has been scaled up from one column per protein for
24 different samples to 12 columns per protein for two different samples. The samples
were highly pure with the same contaminants as those obtained using small-scale protein
purification. Reference [9] found that the MCPA system for protein purification also made
enough protein for biophysical analysis, such as circular dichroism (CD) spectroscopy.
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Figure 4. The multi column plate adapter (MCPA) with columns. (A) Front view of. MCPA (long drip
filter plate with sealing mat) with 24 columns attached. The MCPA guides samples from each column
into a 96, 48 well or open collection plate. (B,C) Top and bottom view of sealing mat respectively. 6
evenly spaced holes are made per row over alternating lines [9].

3. Cell-Surface Display Based on SUMO–Ulp1 System

The cell-surface display method provides the opportunity to target proteins on the
surface of microbial cells, and fusion with an anchoring motif completes the cell-surface dis-
play. This technique is known as a practical method for numerous applications, including
in the development of vaccines, environmental bio-adsorbents, and whole-cell biocata-
lysts [17]. Recently, this technique was suggested as able to simplify protein purification.
Reference [10] reported the application of cell-surface display in protein purification based
on the cleavage of a SUMO-fused target protein by Ulp1 protease that was revealed on
the surface of Escherichia coli cells, as described above (Figure 5). SUMO, a ubiquitin-like
protein, has been used to improve target protein stability and solubility through N-terminal
fusion [18,19]. Ulp1 protease can cut the SUMO tag, which breaks the SUMO tertiary
configuration and makes a native target protein with no extra amino acids [20].
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Figure 5. The diagram shows the protein purification approach established on a cell-surface display
using the SUMO–Ulp1 system.

The effectiveness of the SUMO-Ulp1 structure in protein purification can be archived
using two different vectors: (i) the expression of SUMO-fused target protein on cell surfaces
and (ii) the expression of Ulp1 protease on cell surfaces [10]. In this system, the N-terminal
of a SUMO-fused target protein will be cleaved by the surface-displayed Ulp1 protease.



Biol. Life Sci. Forum 2022, 20, 12 5 of 10

This leads to the release of native target proteins in the buffer solution. Surface-displayed
SUMO and Ulp1 protease can be removed together with the cells by centrifugation. As a
result, the target protein can be collected in the form of a supernatant after centrifugation
and further improved in its purity by simple ultrafiltration. For example, it has been
reported that the purity of the target protein obtained was recorded at more than 80%
using the SUMO-Ulp1 system. The target protein purity was improved by more than 90%
using simple ultrafiltration [10]. Overall, this technique is a simple way to purify the target
protein because it only needs the cleavage and centrifugation steps.

4. Cell-Surface Display Based on SUMO-Ulp1 System

In protein purification, the magnetic separation technique offers a simple approach for
obtaining a high purity level of the target protein by applying magnetic beads. Magnetic
beads are magnetic carriers and affinity ligands [7]. The target protein is bound explicitly
to the specific ligands on the magnetic beads’ surface, creating a magnetic complex during
incubation (Figure 6). Surprisingly, a magnetic separator can easily and quickly extract the
target protein from the magnetic complex. After the removal step, the washing step can
be used to further separate the target protein from the other things that are not what they
should be.
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Figure 6. The principle of magnetic separation techniques.

Magnetic separation techniques, in addition to their cost-effectiveness, offer several
advantages, including high yield and binding capacity, sensitivity, as well as reproducibil-
ity [21,22]. Using this technique, the separation procedure can be conducted openly in
primary samples, which shortens the total purification period. Furthermore, this technique
could be helpful for large-scale operations because of its strength and efficiency. As a part
of the technique described above, magnetic separation also offers a very gentle process
for the purification of the target protein. Using a magnetic separation method to purify
large protein complexes has been shown to obtain more stable proteins than the traditional
column chromatography method [23].
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5. Aqueous Two-Phase System (ATPS)

The “aqueous two-phase system (ATPS) is a liquid-liquid separation technique that
has shown great potential for the extraction, recovery, and purification of a great variety
of biological compounds” [24]. It is a technique commonly used to separate and purify
enzymes and proteins. The advantages of ATPS in protein purification include the simplic-
ity and speed of the separation with minimal denaturation of the enzymes [25]. The most
important part of both phases is water (80 to 90%), and most polymers stabilise protein
structure [26]. The ATPS process is shown in Figure 7.

There are several types of ATPS, such as polymeric aqueous two-phase systems (ATPS-
P) and micellar aqueous two-phase systems (ATPS-M). Additionally, there are reverse
aqueous two-phase micellar systems (ATPS-RM) and ionic liquid-based aqueous two-
phase systems [27].
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6. Types of ATPS
6.1. Polymeric Aqueous Two-Phase System

The “polymeric aqueous two-phase system (ATPS-P) is a liquid-liquid purification
technique using polymers and salt solutions or polymer/polymer solution mixtures” [29].
Two water-soluble solutes separate into two immiscible aqueous-rich phases based on
polymer–polymer, polymer–salt, or salt–salt solute combinations [29]. The advantage of
this structure is that it is simply due to the combination of polymer and salt, even though
the price of polymers can be high compared to the cost of salt.

6.2. Micellar Aqueous Two-Phase System

“Micellar aqueous two-phase systems (ATPS-M) are formed by surfactant solution.
Surfactants are amphiphilic molecules containing a hydrophilic (the head) and a hydropho-
bic (the tail). The surfactant head can be charged either anionic or cationic, dipolar (zwit-
terionic), or non-charged (non-ionic)” [30]. Surfactants form micelle solutions, and the
system functions based on the property that some micelle solutions separate phases into a
micelle-rich and a micelle-poor phase, depending on conditions such as the temperature,
pH, and ionic strength [31].
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6.3. Reverse Aqueous Two-Phase Micellar Systems

“The reverse systems (ATPS-RM) are surfactant-based, using nanometer-sized water
pools. These water pools are formed by a monolayer of surfactant molecules entrapping
water“ [32]. These aggregates can solubilise the different molecules depending on their
hydrophobicity, size, and charge [33].

6.4. Ionic Liquid-Based Aqueous Two-Phase Systems

Ionic liquids are also considered green solvents. Ionic liquids have been applied in bio-
catalysis, electrochemistry, and bio-separations [34]. “Ionic liquids have been investigated
as novel aqueous two-phase systems (ATPS-IL)” [35]. Ionic liquids are usually comprised
of inorganic or organic cations and anions. Most of the time, they are liquids at room
temperature and have low vapour pressure and a wide range of structures.

7. Chromatography Techniques

Chromatography consists of a cluster of separation systems that involve molecular
retardation regarding the solvent front that develops over the measurable portion [36].
Chromatography techniques in separating protein mixtures are the most effective and have
been widely used to purify individual proteins [37]. The purifying process depends on
the protein size, charge, hydrophobicity, and bio-specific interaction. Figure 8 shows the
particular properties of the protein [38].
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The first stage of the chromatography procedure is typically a capturing phase, where
the product will bind to the adsorbent while the impurities do not [39]. Further, weakly
bound proteins will be washed away so the target protein can be eluted [40]. There are
several types of chromatography methods. The types of chromatography methods are
reviewed in the following sections.
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7.1. Ion-Exchange Chromatography

Ionic interactions are the basis for protein purification in the ion-exchange chromatogra-
phy method [41]. Proteins with different surface charges compete with each other for clusters
with opposite directions on an ion-exchanger adsorbent. This increases the separation.

7.2. Affinity Chromatography

Affinity chromatography works based on the principle of an interacting protein. A
protein has binding positions with harmonising surfaces to its ligand. “The binding is
a mix of van der Waals forces, electrostatic or hydrophobic interactions, and hydrogen
bonds” [42].

8. Conclusions

With further advancements in biotechnology and in-depth research on the structure
and function of various proteins, protein separation, and purification technologies, the
MCPA system is an amazingly economical way for protein treatment research to purify
samples. The new method for purifying proteins helps researchers improve their column
chromatography. For example, it helps them figure out what kind and how much resin to
use to purify specific proteins and whether to purify proteins on a large scale.

The cells harbouring surface-immobilised SUMO and Ulp1 can be removed by modest
centrifugation, with the purified protein confined to the supernatant. Because of the affinity
of excess Ulp1 protease for SUMO fusion, excess protein production may be conducted
within half an hour using this method. Overall, the cell surface, using the SUMO–Ulp1
approach, provides an easy process for protein purification in its localised shape that
requires the optimal cleavage and centrifugation steps.

Regular liquid column chromatography is the most commonly used approach for
separating and purifying target proteins and peptides. Magnetic separation strategies are
very new and, therefore, under rigorous improvement. Components of magnetic affinity
are presently usually used in molecular biology (especially for nucleic acid separation), cell
biology, and microbiology (separation of goal cells), and as elements of the techniques for
the identification of absolute analyses, the use of magnetic Enzyme Linked ImmunoSorbent
Assay (ELISA) and associated strategies (exclusively for the identification of medical
markers and environmental impurities). Until now, separations on a small scale have
succeeded, and consequently, the full capability of these strategies is no longer suppressed.
Overall, magnetic separation strategies can offer a better method of protein purification in
the future because of a few advantages.

Use of the ATPS and chromatographic techniques for the downstream processing of
recombinant bromelain was investigated. The evaluations have established that the ATPS
technique is a cost-effective, time-saving (30 min), and high-recuperation approach that
can be scaled up for commercial purposes. Therefore, the ATPS may be a viable single-step
separation purification method, moving away from multi-step purification, such as the
chromatography technique.

Therefore, it should be pointed out that the purity of the proteins obtained in this
review is still insufficient. Consequently, further study and dedication are needed to
develop different protein purification methods since intracellular proteins are transported
mainly by bacterial cells through the cell membrane. In carrier proteins [43], the genetic
deletion of these proteins will decrease the secretion of non-target proteins; chemicals that
prevent protein emission can also obtain protein purity. Even though more research needs
to be done before this protein purification method is widely used, this work provides an
excellent method to purify proteins.
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